
Palma‑Vera et al. BMC Biology           (2022) 20:52  
https://doi.org/10.1186/s12915-022-01248-9

RESEARCH ARTICLE

Genomic characterization of the world’s 
longest selection experiment in mouse reveals 
the complexity of polygenic traits
Sergio E. Palma‑Vera1*  , Henry Reyer2, Martina Langhammer3, Norbert Reinsch3, Lorena Derezanin1,4, 
Joerns Fickel4,5, Saber Qanbari3, Joachim M. Weitzel1, Soeren Franzenburg6, Georg Hemmrich‑Stanisak6 and 
Jennifer Schoen1,7 

Abstract 

Background:  Long-term selection experiments are a powerful tool to understand the genetic background of com‑
plex traits. The longest of such experiments has been conducted in the Research Institute for Farm Animal Biology 
(FBN), generating extreme mouse lines with increased fertility, body mass, protein mass and endurance. For >140 
generations, these lines have been maintained alongside an unselected control line, representing a valuable resource 
for understanding the genetic basis of polygenic traits. However, their history and genomes have not been reported 
in a comprehensive manner yet. Therefore, the aim of this study is to provide a summary of the breeding history and 
phenotypic traits of these lines along with their genomic characteristics. We further attempt to decipher the effects of 
the observed line-specific patterns of genetic variation on each of the selected traits.

Results:  Over the course of >140 generations, selection on the control line has given rise to two extremely fertile 
lines (>20 pups per litter each), two giant growth lines (one lean, one obese) and one long-distance running line. 
Whole genome sequencing analysis on 25 animals per line revealed line-specific patterns of genetic variation among 
lines, as well as high levels of homozygosity within lines. This high degree of distinctiveness results from the com‑
bined effects of long-term continuous selection, genetic drift, population bottleneck and isolation. Detection of 
line-specific patterns of genetic differentiation and structural variation revealed multiple candidate genes behind the 
improvement of the selected traits.

Conclusions:  The genomes of the Dummerstorf trait-selected mouse lines display distinct patterns of genomic varia‑
tion harbouring multiple trait-relevant genes. Low levels of within-line genetic diversity indicate that many of the ben‑
eficial alleles have arrived to fixation alongside with neutral alleles. This study represents the first step in deciphering 
the influence of selection and neutral evolutionary forces on the genomes of these extreme mouse lines and depicts 
the genetic complexity underlying polygenic traits.
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Background
Artificial selection is the selective breeding of organisms 
by which desired phenotypic traits evolve in a popula-
tion [1]. Farm animals are the result of this selective 
breeding process to achieve efficient food production. 
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However, artificial selection can also be applied experi-
mentally in other species in order to connect genes and 
other genomic elements to selection response for com-
plex traits such as behaviour [2] and limb elongation [3]. 
More generally, experimental evolution, which includes 
artificial selection experiments, is a powerful approach 
to understand response to selection across multiple traits 
and organisms [4].

The worldwide longest selection experiment on mice 
began in 1969 at the former Forschungszentrum für Tier-
produktion (FZT), nowadays called Research Institute 
for Farm Animal Biology (FBN) located in Dummerstorf, 
Germany [5, 6]. Starting from a single founder line devel-
oped from four outbred and four inbred mouse strains 
[5, 6], selection lines for different complex traits were 
bred with population sizes of 60–100 breeding pairs per 
line. An unselected control line from the same founder 
line was maintained over the entire selection period 
with a larger population size (125–200 breeding pairs) 
[5, 6]. Over the course of >140 generations, selection has 
shaped the genomes of the Dummerstorf trait-selected 
mouse lines, and led to extreme phenotypes that include 
increased litter size (approx. double the litter size of the 
unselected mouse line) [7], body mass (approx. 90g body 
weight at 6 weeks of age) [8] and endurance (more than 
3× higher untrained running capacity) [9, 10]. Therefore, 
in order to elucidate the unpredictable polygenic back-
ground of these complex traits, where multiple genes, 
regulatory elements and pathways act in conjunction, the 
Dummerstorf trait-selected mouse lines represent a valu-
able resource.

Other selection experiments have generated mice 
with increased litter size [11–14], as well as mice with 
enhanced body weight (see [15, 16] for a list of body 
weight mouse lines) and exercise performance [17], yet 
few studies have examined the polygenic background 
of these traits through genomic analysis. For example, 
a genome-wide association study of the high-fertility 
inbred strain QSi5 corroborated multiple previously 
reported loci associated with reproductive performance 
[18]. Likewise, a multi-line approach detected shared loci 
controlling body weight across seven high body weight 
selection lines, including an inbred subline of the Dum-
merstorf ’s body mass line [16]. Finally, a comprehen-
sive genomic analysis of mice from the “High Runner” 
selection experiment found widespread regions with 
significant genetic differentiation between selected and 
unselected replicate lines (4 per group) [19].

The Dummerstorf mouse lines expand the repertoire 
of polygenic mouse models to understand the genetic 
basis of fertility, body weight and endurance. Each of 
these lines arose from almost the same genetic diver-
sity and has been maintained to this day for about half 

a century. Here we describe the selection history of this 
unique selection experiment, characterize line-specific 
patterns of genetic variation and identify genes that are 
likely associated to each selection trait.

Results and discussion
Phenotypic impact of selection
Over the course of more than 140 generations (Table 1), 
the selected traits (Table  2) have shown remarkable 
increments in each line (Table 1, Fig. 1, Additional file 2: 
Figure S1). The span and number of generations makes 
the present study the longest selection experiment ever 
reported in mice. Relative to the unselected control 
line FZTDU (exposed to genetic drift only), reproduc-
tive performance has doubled in DUK (Fertility mouse 
line 1) and DUC (Fertility mouse line 2) (Fig. 1A,B, F,G, 
Additional file 2: Figure S1). Even though these two trait-
selected lines have achieved comparable litter sizes at 
first delivery (>20 offspring) [20], their reproductive lifes-
pan differs, with 5.8 and 2.7 litters in average per lifetime 
for DUK and DUC, respectively [20]. A remarkable level 
of divergence has been achieved by the increased body 
size lines (Fig. 1C,D, Additional file 2: Figure S1). Individ-
uals of the body mass line (DU6) have almost tripled their 
weight compared to FZTDU (Fig.  1H, Additional file  2: 
Figure S1), whereas mice of the protein mass line (DU6P) 
not only have become larger and heavier than FZTDU 
mice, but their level of muscularity is also considerably 
higher (Fig. 1D,I, Additional file 2: Figure S1). In terms of 
running distance capacity, the treadmill performance line 
(DUhLB) can on average cover three times more distance 
than FZTDU (Fig. 1J, Additional file 2: Figure S1).

With the exception of the obese line DU6 [21], each 
one of the trait-selected mouse lines has developed an 
extreme phenotype without obvious detrimental effects 
on their general health, well-being, and longevity. All these 
lines are still maintained, but selection only continues for 
DUK, DUC and DU6. Due to the long span of this selec-
tion experiment, lines have been given alternative names 
(Table 1, Additional file 3 [6, 8, 10, 20–41]: Table S1) and 
selected at variable intensities (Additional file 2: Figure S2).

Whole genome sequencing (WGS) analysis 
and short variant detection
After quality filtering and trimming, >90% of the raw reads 
were mapped to the genome as pairs, with a mean insert 
size of ~380 bp. For samples sequenced at a target cover-
age of 30×, mean genome-wide coverage averaged ~24×, 
with ~95% of genome territory covered at least 5×; sam-
ples sequenced at a target coverage of 5× averaged ~8× 
and ~72%, respectively (for a summary across all samples 
see Table 3 and for details, Additional file 4: Data S1).
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The final variant call set contained 5,099,945 sin-
gle-nucleotide polymorphisms (SNPs) and 766,655 
insertions-deletions (INDELs) (374,604 insertions; 
392,051 deletions, Additional file  2: Figure S3B). 
The trait-selected lines had much fewer variants 
than FZTDU and these variants were mostly fixed, 
whereas FZTDU variants were mostly polymorphic 
(Fig. 2, Additional file 2: Figure S4, Additional file 3: 
Table  S2). This reduction in genetic diversity could 
be explained by the fact that the trait-selected lines 
have been maintained at smaller population sizes and 

were relocated with fewer founders (Table 1). In fact, 
it has been shown that artificial selection for complex 
traits does not affect the number of segregating sites 
[3], nor the number of SNP sites and heterozygosity 
[19]. Interestingly, more than 89% of the variants 
observed in the trait-selected lines were also detected 
in the control line FZTDU (Fig. 2A, Additional file 3: 
Table  S2), indicating that despite genetic drift, the 
control line preserves most of the alleles underlying 
each selected trait and that it still is a proxy of the 
original founder population.

Table 1  Summary selection history of the Dummerstorf mouse lines

BPs breeding pairs, WGS whole genome sequencing, NR no records

Trait increment: mean trait expression in the sampled generation compared with trait expression in starting generation
a Percentage selected: percentage of litters from which parents were chosen
b Transfer of animals to a new housing building in 2011
c Total generations under selection until first and second sampling
d See Additional file 3: Table S1 for references on alternative names

FZTDU DUK DUC DU6 DU6P DUhLB

Established (year) 1969 1971 1971 1975 1975 1982

No. Founders (BPs) NR 60 60 80 80 100

Trait increment  –  2× . 2× 3× 2× 3×
Percentage selecteda  –  25–80  25–80 45–90 45–70 40–100

Relocationb at generation  160–164  165  163–164 154–155 154–155 120–121

BPs per generation before relocation  200  60–100  60–100 60–80 60–80 60–100

BPs after relocation (founders)  55  19  24 7 19 22

BPs per generation (current)  125  60  60 60–120 60 60

End of selection (at generation)  – Ongoing Ongoing Ongoing 152 141

No. generations under selectionc  – 182/189 180/187 169/177 152/152 117/117

WGS at generation(s)  188/195 188/195  186/193 177/185 177/184 143/150

Alternative namesd Fzt: DU, DUK, Ctrl DU-K, FL1 DU-C, FL2 BW, Titan  PA DU-hTP

Table 2  Selection criteria for Dummerstorf trait-selected mouse lines

Line-ID Selected Sex Trait

FZTDU  – Unselected

DUK Females Number of offspring in first litter and litter weight at birth

DUC Females Number of offspring in first litter and litter weight at birth

DU6 Males Body mass at day 42 of age

DU6P Males Protein amount in carcass at day 42 of age

DUhLB Males Submaximal untrained running distance on treadmill

Fig. 1  Phenotypic characteristics of the five trait-selected Dummerstorf mouse lines and the unselected control line FZTDU. Representative 
subjects showing the impressive litter size of DUK and DUC (A, B, F, G) and the considerable body size difference at 6 weeks of age between DU6 
(C, H) or DU6P (D, H, I) and FZTDU. E Untrained mice undergoing a treadmill running endurance trial and the increased running performance of 
DUhLB due to selection (J). Stars signify differences (p < 0.05) after conducting a t-test between trait-selected lines and FZTDU. Sample sizes are 
indicated below tick labels (x-axis)

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Most (~90%) INDELs were no longer than 10 bp (Addi-
tional file  2: Figure S3A, Additional File 3: Table  S4), 
with slightly more deletions than inversions (Additional 
file 2: Figure S3B). The proportion of SNPs and INDELs 
overlapping dbSNP was 95% and 55%, respectively. This 
discrepancy is not necessarily due to a high number of 
artefacts in the INDEL set, but rather by the fact that 
INDELs are a much less characterized type of genetic 
variant in comparison [42].

The number of alleles present in all six lines was ~1M, 
but very few alleles were shared by the trait-selected lines 
exclusively (~3.3K) (Fig. 2B). The lines DU6P and DUhLB 
were the most polymorphic of the trait-selected lines, fol-
lowed by DU6. The two fertility lines (DUK, DUC) were 
the least polymorphic ones (Fig.  2B, Additional file  3: 
Table S2).

Almost all SNPs and INDELs (~97%) occurred in non-
coding regions (introns ~56%; intergenic ~41%). This is 
not an unexpected outcome considering that only ~2% 
of the genome codes for proteins and genetic variation is 
widespread. Inter-genic variants could affect regulatory 
elements of gene expression, as well as transcripts not 

yet described [43], whereas intronic variants could affect 
gene splicing [44].

Based on assessment of variant annotations, a very 
small number of variants (20,236 SNPs and 1,801 
INDELs) were classified as high-impact and moderate-
impact mutations, and could interfere with gene tran-
scription or translation. These “impact variants” were 
screened for (i) being private for any trait-selected line 
(Additional file 3: Table S3) and (ii) the functional cat-
egories their affected genes belonged to. The number 
of genes affected by these private “impact variants” 
was twice as large in DUhLB (1027 genes) than in the 
other trait-selected lines (465–546 genes). However, 
there was no obvious coherence between significantly 
enriched functions and the selected traits (Additional 
file 4: Data S2).

Runs of homozygosity (RoH) and linkage disequilibrium 
(LD)
While for the five trait-selected lines, most of the SNP 
loci (57.5–81.5%) were already fixed for either the refer-
ence or the alternative allele, in the control line FZTDU 

Table 3  Summary metrics WGS data

Target coverage 30× Target coverage 5×

Sample size 60 90

Mean number of reads mapped as pairs 90.72% 93.07%

Mean insert size 347.73 bp 401.65 bp

Mean genome-wide coverage 24.08× 7.89×
Mean genome territory covered ≥ 5× 95.57% 71.82%

Fig. 2  Overview and classification of SNP sites. A SNP sites were classified as fixed or not-fixed if their allele frequencies were 1 or <1, respectively. 
At each line, the fraction of variants shared (in FZTDU) and not shared (not in FZTDU) with FZTDU is also shown. B Blue horizontal bars: Total 
number of SNP sites detected in each line. Brown vertical bars: Number of private SNP sites for each line (single black dots), shared only by the 
trait-selected lines (five black dots) and by all lines (six black dots)
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alleles were mostly (>75%) polymorphic (Additional 
file  2: Figure S5). This disparity was also reflected by 
the distribution of frequencies for the alternative allele, 
displaying a “U” shape that is much more pronounced 
in the trait-selected lines than in the control line (Addi-
tional file  2: Figure S6). Genomes of mice from the 
control line FZTDU also had higher nucleotide diver-
sity (Additional file  2: Figure S7 and S8). Accordingly, 
RoH covered between ~65 and ~78% (~50% as 1–8 
Mb tracts) of the genome length of the trait-selected 
lines, but only ~45% (~23% as 1–8 Mb tracts) of the 
genome length of FZTDU (Fig.  3A). Analysing RoH 
shared among individuals of a population can aid to 
detect past selection events [45]; however, this is appli-
cable as long as RoH events are rare in the genome 
(RoH islands), which is not the case here, where RoH 
are widespread, indicating that the observed degree of 
homozygosity is the result of a combination of multiple 
evolutionary forces.

Linkage disequilibrium decay, represented by the 
genotype correlation (r2) between pairs of SNP sites 
within min. 0.1 Mb and max. 5 Mb, can be classified 
into three patterns with decreasing decay strength; 
one for the three most homozygous trait-selected 
lines (DUK, DUC and DU6; upper three lines Fig. 3B), 
a second for the two least homozygous trait-selected 
lines (DU6P and DUhLB; middle two lines Fig.  3B) 
and a third for the unselected line FZTDU (bottom 

line Fig.  3B). Overall, r2  clearly differs between trait-
selected lines and FZTDU. Comparable levels of 
r2  have been reported in mountain gorillas, in which 
population decline has led to high levels of inbreeding 
[46]. Likewise, strong levels of LD have been observed 
in laboratory mice [47]. However, other populations 
with high levels of inbreeding, such as dog [48] and 
horse breeds [49], do not display such strong geno-
typic correlations, highlighting the impact of the bot-
tleneck in the genetic diversity of the Dummerstorf 
mouse lines.

Population structure of the Dummerstorf mouse lines
The genetic relationship among the 150 Dummerstorf 
mice was assessed by hierarchical clustering (HC) and 
admixture analysis using the 5,099,945 SNPs obtained 
after variant calling. Samples formed a hierarchical 
group structure that represented each of the Dummer-
storf lines (Fig. 4A). There was no admixture present in 
the trait-selected lines, except for one DUC animal shar-
ing ancestry with mice from DU6P (Fig.  4B). FZTDU 
is represented as an admixture of all the trait-selected 
lines with similarly large contributions of the four older 
lines and a significantly larger contribution of DUhLB 
(Fig. 4B). This is expected because this mouse line is the 
youngest and has had the least number of generations 
that underwent selection.

Fig. 3  Runs of homozygosity and linkage disequilibrium decay in the Dummerstorf mouse lines. A Per line average extent of homozygosity as 
a fraction of the genome length. RoH of different length range are specified by colours. Error bars show ±1SD. B Decay of the mean genotype 
correlations among SNP pairs as close as 0.1 Mb and as far as 5 Mb
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Genetic differentiation of the trait‑selected lines
Mean genome-wide pairwise genetic differentiation 
among trait-selected lines estimated with the genetic 
differentiation index (FST) ranged from 0.44 to 0.61 
(Fig.  5B). The highest level of differentiation was found 
between either one of the fertility lines and the body 
mass line DU6 (FST(DUK-DU6) = 0.61 and FST(DUC-DU6) = 
0.59; Fig.  5B), followed by the differentiation between 
the two fertility lines themselves (FST(DUK-DUC) = 0.57; 
Fig.  5B). Although pairwise genetic differentiation 
between trait-selected lines and the control line was 
similar in all comparisons (FST ~ 0.3), it was lowest in the 
pairwise comparison between the two most polymorphic 
lines (FST(DUhLB-FZTDU) = 0.26; Fig. 5B). Such strong levels 
of differentiation occur mainly as a result of reproductive 
isolation and genetic drift [50]; however, it is expected 
that a subset of alleles that have arrived to fixation due 
to selection contribute to genetic differentiation as well. 
The challenge is thus to sort out which genomic regions 
contain such beneficial alleles.

Trait‑specific regions of genetic differentiation
Genome-wide scans were conducted in order to detect 
genomic regions of consistent genetic differentiation 

between each trait-selected line and FZTDU. The 
pseudo-line of DUK and DUC combined (FERT) was 
also included, for a total of six FST contrasts. Overall, 
outstanding regions of particularly extreme genetic dif-
ferentiation were not observed, but rather a uniform 
genome-wide level of high FST (Fig.  5A). Choosing 
genomic regions of interest by focusing on the most dif-
ferentiated regions (95th or 99th percentile of the FST 
distribution) resulted in the detection of multiple loci 
in every chromosome (Fig.  5A). Because these regions 
were frequent and did not sufficiently depart from the 
global level of genetic differentiation to be considered 
genomic outliers (i.e. max. zFST: 2.89–3.47, Fig.  5C), a 
more stringent approach was applied to identify line-spe-
cific regions of high genetic differentiation (Fig. 6D and 
Fig.  7D), while reducing the influence of genetic drift. 
These regions of distinct genetic differentiation (hereaf-
ter referred to as RDDs) appeared simultaneously in the 
top 5% FST windows of the target contrast and in the bot-
tom 10% of all the remaining contrasts, occurring close 
to each other in only a subset of chromosomes and con-
taining multiple genes (Fig. 6A–C, Fig. 7A–C, Additional 
file  4: Data S3-S14), some of which were related to the 
selected traits (see below).

Fig. 4  Genetic structure and cluster assignment of 150 mice of the six Dummerstorf mouse lines. A Hierarchical clustering analysis assorting 
individuals into distinctive mouse line clusters. B Genetic composition of each mouse (indicated by 25 ticks on the x-axis) in terms of the five 
trait-selected lines. Individuals are coloured according to the respective line of origin

Fig. 5  Genetic differentiation of the Dummerstorf trait-selected lines. A Genome-wide scans of genetic differentiation in sliding window mode 
(size = 50 kb, step = 25 kb) contrasting each trait-selected line to FZTDU. Each window is the average FST of at least 10 SNPs. B Pairwise genomic 
mean FST among all six Dummerstorf lines. C FST distribution as z-scores, illustrating the departure of each window from the mean genomic level of 
genetic differentiation. Dotted lines indicate the 95th (red) and 99th (blue) percentiles and black dots correspond to data points larger than 1.5 the 
interquartile range (outliers)

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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These thresholds were empirically determined 
based on a similar study comparing two extremely 
differentiated inbred maize lines [51]. Neutral-
ity simulations were not conducted due to the lack 
of genetic material from founders and incomplete 

pedigrees. This information is critical to identify 
discrete candidate targets of selection for complex 
traits, in which selection response occurs gradually 
and myriads of loci with small effects are expected to 
be involved [3].

Fig. 6  Genes mapped to regions of distinct genetic differentiation for fertility lines. A–C Genomic overview of RDDs for each of the fertility lines 
(DUK, DUC) and the joint pseudo-line (FERT). D FST distribution of RDDs, demonstrating the gap in FST between the target lines and the rest



Page 10 of 20Palma‑Vera et al. BMC Biology           (2022) 20:52 

Line‑specific patterns of structural variation (SV)
Despite primarily thought to be deleterious and impli-
cated in disease phenotypes [52, 53], large chromosomal 
rearrangements such as deletions, duplications and 
inversions have an important role in local adaptation 

and divergence of populations [54]. These structural 
variants can lead to gene expression differences by dis-
rupting genes and altering gene dosage [55]. Because 
copy number variation often results in notable pheno-
typic differences, it is likely a subject to selection during 

Fig. 7  Genes mapped to regions of distinct genetic differentiation for body mass and treadmill performance lines. A–C Genomic overview of RDDs 
for DUhLB, DU6 and DU6P, respectively. D FST distribution of RDDs, demonstrating the gap in FST between the target lines and the rest
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domestication [56]. For example, genes related to meta-
bolic activity and production traits have been shown to 
be affected by copy number variation during artificial 
selection of cattle [57], goats [58] and pigs [59].

After calling and filtering, only duplications, dele-
tions and inversions remained in the final SV data 
set. Insertions did not occur in enough samples to be 
included in the analysis. Also, because of the lower 
detectability in the low sequencing coverage samples, 
most SVs were found in high coverage samples (Addi-
tional file 3: Table S10). Nevertheless, the final SV call 
set contained the union of good-quality SVs detected in 
both coverage sets.

SVs were predominantly located in non-coding regions 
(98%) where they could affect gene expression. Also, 
SVs (Table  4) were more abundant in the trait-selected 
lines (deletions (DEL) 5560–4339; duplications (DUP) 
48–20; inversions (INV) 1508–530) than in the control 
line (DEL 3902; DUP 14, INV 605) implying that large 
genomic rearrangements could contribute to the devel-
opment of the selected traits. In order to associate SVs 
to each selected trait, line-specific SVs overlapping pro-
tein-coding genes were identified and characterized in 
greater detail (Additional file 4: Data S15). The total num-
ber of these line-specific SVs ranged from 9 (FZTDU) to 
36 (DUC), comprising mostly deletions and inversions 
(Table  4). Most SVs were polymorphic and large length 
differences were observed between polymorphic and 
fixed SVs (Additional file 3: Table S6). Fixed line-specific 
deletions were detected in all lines, whereas duplications 
were found only in DU6P, and inversions only in DUC, 
DU6P and DUhLB (Additional file 3: Table S7).

The number of genes affected by fixed line-specific SVs 
varied from 1 (DUC, DU6P, FZTDU) to 5 (DUK), but 
went up to more than a thousand for genes affected by 
large polymorphic inversions (Additional file 3: Table S8). 
These genes were classified in functional groups based on 
the biological processes they are associated with (Addi-
tional file  3: Table  S9). The most gene-rich functional 
groups are the ones associated with sensory perception, 

predominantly olfaction (found in the fertility lines DUK 
and DUC), followed by “cell cycle and nucleic acid tran-
scription and translation” (in DUC), and “metabolism 
and energy conversion” (DUC, DU6P).

Genes associated with fertility
Genes detected in RDDs for DUK were enriched for 
“phospholipase D signalling pathway” (Additional file 3: 
Table  S5). In granulosa cells, phospholipase D activity 
is stimulated by GnRH, thereby inducing or inhibiting 
cell differentiation depending on the maturation state 
of the ovarian follicle [60]. Other genes encode for pro-
teins involved in the ovarian development and mainte-
nance of the primordial follicle reserve (Tsc1 [61], Trp63 
[62]), in the vascularization of the placenta (Atoh8 [63]) 
and facilitate maternal supplied lipids and dietary fat 
digestion in neonatal mice (Cel [64, 65]). Furthermore, 
DUK shares a fecundity associated region (Sftpb, Usp39, 
Tmem150, Rnf181, Vamp5, Vamp8, Cgcx, Mat2a) with 
Qsi5 mice [18], an inbred mouse line known for its 
increased litter size, and candidate genes associated 
with birth rate and male fertility in humans (Ntm [66]) 
and litter size in cattle, goats and pigs (Dio3 [67–69]). 
Interestingly, analysis of private SVs detected a 317-bp 
deletion affecting Olfr279 (Additional file 4: Data S15). 
This gene has been associated to mouse male sub-fer-
tility [70] and more generally, olfactory receptors could 
regulate fertilization [71, 72].

Significantly enriched terms for DUC included “intra-
cellular steroid hormone receptor signalling pathway” 
(Additional file  3: Table  S5), involving progesterone 
receptor (Pgr) carrying a missense mutation, which is 
fixed in and specific for DUC (Additional file  2: Figure 
S9B). Progesterone is one of the main steroid hormones 
regulating reproductive processes and critical for (i.a.) 
pregnancy maintenance and mammary gland develop-
ment [73, 74]. It remains to be proven if a connection 
exists between this missense and potentially deleterious 
(Sorting Intolerant From Tolerant (SIFT) score = 0.04) 
mutation and the fact that DUC females display increased 

Table 4  Summary of structural variants detected in all mouse lines

Total Line-specific-genic

DEL DUP INV Total DEL DUP INV Total

DUK 4633 32 530 5195 11 2 7 20

DUC 5560 48 1248 6856 10 2 24 36

DU6 5025 27 551 5603 11 0 7 18

DU6P 4339 23 2091 6453 9 1 14 24

DUhLB 4614 20 1508 6142 10 1 9 20

FZTDU 3902 14 605 4521 4 0 5 9
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levels of progesterone [22]. Interestingly, a Neanderthal 
missense mutation in Pgr associated with increased fer-
tility was recently reported to segregate in human popu-
lations [75]. Further candidates in DUC control ovarian 
follicle development, uterine growth and endometrial 
angiogenesis during pregnancy (Yap1 [76], Rxfp1 [77, 
78]). In the context of preparation of the endometrium 
for implantation and pregnancy and progesterone signal-
ling, the gene Rrm2 [78] was identified by the structural 
variation analysis of the DUC genome.

The fertility lines DUK and DUC have been bred 
according to the same criteria, share the same evolution-
ary history, and both have been able to more than double 
the number of pups per litter since the beginning of selec-
tion. Despite these commonalities, improved fertility is 
achieved via different physiological pathways in each line 
[22]. For example, females from both fertility lines have 
an increased ovulation rate, but only DUK exhibits folli-
cles containing multiple oocytes; DUC on the other hand 
shows an increased progesterone level compared to DUK 
and FZTDU [22]. The scarce number of RDDs in the 
combined FERT population also illustrates this discrep-
ancy. Candidate RDD and line-specific SV overlapping 
genes in both fertility lines likely affect the reproductive 
process on multiple levels such as ovarian physiology, 
placentation, sex steroid signalling and milk composition.

Genes associated with body size and endurance
Two of the Dummerstorf trait-selected mouse lines have 
increased their body weight in response to selection. The 
“giant” DU6 line (selected for body mass at 6 weeks of 
age) exhibits an obese phenotype [8] while the protein-
mass line DU6P (selected for protein mass in the carcass) 
is lean and muscular [25].

In line with the obese phenotype, DU6 candidate genes 
overlapping RDDs regulate energy metabolism and food 
intake (Hcrt [79]) and are linked to feed efficiency (Wdr27 
[80]) and body composition in other species (Atp11b 
[81]). DU6 mice also exhibit larger bones [21], and the 
analysis of SVs detected Smad5, a modulator of bone for-
mation [82], to be partially overlapped by a heterozygous 
deletion and a heterozygous inversion. Though DU6 gave 
origin to DUHi, one of the lines used to detect parallel 
selected regions (PSRs) for high body weight, none of the 
RDDs intersected with PSRs [16]. This is partly explained 
by the fact that DUHi was established after sampling 
DU6 mice on generation 85 (well before bottleneck, see 
Table 1) and further maintenance of these animals under 
inbreeding [15].

Candidate genes in the RDDs for DU6P conform 
with growth-related major quantitative trait loci found 
in sheep and are known to influence stature and body 
size in cattle, pigs and human (Plag1 [83, 84], Chchd7 

[83–85], Impad1 [86]). In line with this, an SV (deletion) 
was found overlapping Fam92a, a gene that is involved in 
limb development [87]. Further candidates for lean body 
mass are the RDD overlapping genes Piezo1 (myotube 
formation [88, 89]) and Cdh13 (control of lipid content in 
developing adipocytes [90–92]).

Finally, genes specific for the endurance line DUhLB 
participate in lipid metabolism (these animals display 
faster mobilization of lipids during exercise). Only two 
DUhLB genes (Aldh3a1 and Aldh3a2, the later contain-
ing 3 missense SNPs (Additional file  2: Figure S10C)) 
caused the significant enrichment of the “Histidine 
metabolism” and “beta-Alanine metabolism” path-
ways (Additional file  3: Table  S5). The “marathon mice” 
DUhLB have developed a striking metabolic phenotype 
characterized by accelerated browning of subcutaneous 
fat and altered mitochondrial biogenesis in response to 
selection for high treadmill performance [29]. Likewise, 
detected RDD candidate genes are involved in the devel-
opment of brown adipocytes (Srsf6 [93]), removal of toxic 
waste products from lipid metabolism (Aldh3a2 [94]), 
mobilization of fatty acids, mitochondria content and 
cristae complexity (Il15r [95]) and in the regulation of 
glycolysis associated to obesity and weight gain (Pfkfb3 
[96, 97]). Moreover, SV analysis detected a ~2.8 kb inver-
sion in Atp5j whose overexpression has been shown to 
counteract exercise-induced cardiac hypertrophy in mice 
[98]. Interestingly, the genes identified here did not over-
lap with significantly differentiated genes of the “High 
Runner” selection experiment [19], highlighting the fact 
that these two studies produced phenotypically differ-
ent mice (i.e. DUhLB shows lower running wheel activity 
compared to controls [31]).

Limitations
There are five main weaknesses in this study. First, due to 
gaps in pedigree documentation over more than 140 gen-
erations, modelling neutrality was not feasible. In turn, 
the thresholds to evaluate line-specific genetic differen-
tiation were chosen empirically by setting conservative 
limits that minimize the presence of false positives.

Second, at its origin in 1969, the study was not designed 
to conduct genomic analyses. Thus, genetic material from 
the founders is not available. Unfortunately, this and the 
incomplete pedigree information hamper the detection 
of signatures of selection. However, the genomic data 
generated here still allows deriving biological interpreta-
tions based on the line-specific patterns of genetic differ-
entiation, which is the subject of this study.

Third, relocation of the mouse lines by embryo trans-
fer resulted in a genetic bottleneck and random fixation 
events. This further obscures insight into the selection 
response mechanisms of these mouse lines. Still, the 
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current strong phenotypic divergence of the lines is the 
result of long-term selection.

Fourth, except for the fertility lines DUK and DUC, 
trait-selected lines were not replicated in order to iden-
tify overlapping genomic signatures. Interestingly, these 
two lines are markedly different both physiologically and 
genetically, despite having the same selection criteria.

Finally, SVs were detected using short pair-end reads 
(150bp) and this is not an optimal approach for SV dis-
covery. For this, long reads provide much greater accu-
racy and sensitivity [99, 100].

Conclusions
The genomes of the Dummerstorf trait-selected mouse 
lines have evolved in response to selective breeding and 
neutral forces, exhibit low genetic diversity and display 
distinct patterns of genetic variation. Distinguishing 
between selection and neutral evolution is a challenging 
task and will require further research. However, by focus-
ing on regions of distinct genetic differentiation, we were 
able to identify genes with important functions associ-
ated to the selected traits.

Over the span of this selection experiment, traits have 
improved continuously and have not decayed despite 
the dramatic loss of genetic diversity within lines. This 
implies that many of the alleles that contribute to trait 
improvement have arrived to fixation and that these lines 
are highly enriched for such alleles. Therefore, a deeper 
understanding of the genomes of the trait-selected Dum-
merstorf mouse lines will provide valuable insights into 
the genetic basis of important polygenic traits and con-
stitutes an unprecedented scientific resource for geneti-
cists, physiologists and the wider biomedical research 
community.

Methods
Selection history of the Dummerstorf trait‑selected mouse 
lines
The selection experiment started in 1969 (Tables  1 and 
2, for more detail see Additional file  1: Supplementary 
Methods [5, 6, 22, 101–114]) with the establishment of 
a founder line FZTDU (Forschungszentrum für Tier-
produktion Dummerstorf ) [5, 6] by systematic crossing 
of four outbred strains (NMRI orig., Han:NMRI, CFW, 
CF1) and four inbred strains (CBA/Bln, AB/Bln, C57BL/
Bln, XVII/Bln). From FZTDU, five lines were established 
through selective breeding: two lines were selected for 
increased litter size (DUK and DUC), one for increased 
body mass (DU6), and one each for protein mass (DU6P) 
and treadmill running endurance (DUhLB) (Table  2, 
Fig. 1, Additional file 2: Fig. S1).

Sample collection and whole genome sequencing
All animal procedures were performed in accordance 
with national and international guidelines and approved 
by the Animal Protection Board of the Institute for Farm 
Animal Biology. Genomic DNA was purified from tail 
biopsy samples using QIAamp DNA Mini Kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s rec-
ommendations. A total of 25 females per line (150 ani-
mals in total) were sampled at two different time-points 
(Table  1). For the first time-point, 10 females per line 
with the lowest kinship coefficient were chosen. Kinship 
was determined using the programme INBREED imple-
mented in the software SAS/STAT® (v9.4, SAS Institute 
Inc., USA). For the second time-point, 15 females per line 
were chosen at random since the kinship coefficient is 
similar among subjects of the same line. The study was 
originally designed with 10 females per line, sequenced 
at high coverage (target 30×, time-point 1) to capture as 
much line-specific genetic variability as possible. Due to 
the low genetic variability in each line resulting from the 
preliminary data analysis, 15 additional females per line 
were sequenced. As this was intended to verify the low 
degree of genetic variability at the initially detected loci 
and to increase the number of total observations for each 
line, the samples of the second batch were sequenced 
with a lower sample coverage (target: 5×, time-point 2).

Library preparation and sequencing were carried out 
at the Competence Centre for Genomic Analysis (Kiel). 
Paired-end sequencing libraries were prepared using 
the TruSeq Nano DNA Library Prep kit following the 
manufacturer’s specifications (Illumina Inc., San Diego, 
CA, USA). Out of the 150 libraries, 60 were sequenced 
on a HiSeq 4000 platform (Illumina Inc.), and 90 sam-
ples were sequenced on a NovaSeq 6000 (Illumina Inc.) 
platform. The target coverage was 30× (high coverage 
set) and 5× (low coverage set), respectively. Read length 
was 151 nucleotides. Samples sequenced at 30× (n = 60) 
were distributed in 9 lanes for a total of 540 pairs of read 
files. Ten of those samples had to be supplemented with 
extra sequencing data due to not reaching the expected 
30× coverage. Samples sequenced at 5× were not lane-
distributed, amounting to 90 pairs of read files. In total, 
640 pairs of read files were produced. Sample-wise WGS 
data is summarized in Additional file 4: Data S1.

Analysis of WGS data
Adapter removal and quality trimming were done using 
Trimmomatic v0.38 [115] for HisSeq reads and FASTP 
v0.19.6 [116] for NovaSeq reads. Read quality was evalu-
ated before and after processing with FastQC v0.11.5 
[117]. Reads were aligned to the mouse genome build 
GRCm38.p6 [118, 119] from Ensembl version 93 [120] 



Page 14 of 20Palma‑Vera et al. BMC Biology           (2022) 20:52 

using the Burrow-Wheeler Aligner software in MEM 
mode (BWA-MEM) [121] coupled with SAMtools v1.5 
[122] in order to store alignments as Binary Alignment 
Map (BAM) files. Per sample BAM files were processed 
sequentially with Picard tools [123] by adding read group 
information (AddOrReplaceReadGroups), merging align-
ments from different read groups (MergeSamFiles), and 
by sorting (SortSam) and marking duplicated (MarkDu-
plicates) reads.

Short variant calling and annotation
Short variants were detected according to GATK’s best 
practices for germline short variant discovery (GATK v 
4.0.6.0) [124–127]. Systematic errors in base quality were 
corrected using BaseRecalibrator and dbSNP [128] ver-
sion 150 for Mus musculus (Ensembl version 93 [129]). 
For each sample, variants were called with Haplotype-
Caller and then combined with GenomicsDBImport. Joint 
genotyping was done with GenotypeGVCFs and then 
only bi-allelic variants (SNPs and INDELs) were retained. 
Filtering was applied separately for SNPs and INDELs. 
Site-level filtering was done following the Variant Quality 
Score Recalibration (VQSR) procedure. This comprised 
an internal variant set used as truth-training resource, 
created after stringent site-level filtering of the bi-allelic 
variants obtained from joint genotype calling, plus an 
external pre-filtered training variant set provided by the 
Mouse Genomes Project (MGP version 5 [130]). Variants 
were genotyped as missing if the depth of coverage (DP) 
was either too low (<4), too high (3 standard deviations 
higher than the sample mean depth) or if the genotype 
quality (GQ) was too low (<20). INDELs overlapping 
microsatellites [131] were excluded. The final set con-
sisted of variants present in at least 15 samples per line 
(except for DU6 that had a lower coverage, so this thresh-
old was lowered to 12 samples). Annotations were done 
using SnpEff v4.3t [132] and missense mutations were 
further evaluated with Ensembl Variant Effect Predictor 
(VEP) v.101.0 [103] to obtain their corresponding SIFT 
scores [133] and to predict amino acid changes affecting 
protein function.

Structural variant calling and annotation
Processed BAM files used for short variant calling were 
also used to detect large structural variants (SVs). SVs 
correspond to deletions, duplications, insertions, inver-
sions and translocations of at least 50 bp in size [134]. 
Because of the considerable difference in coverage of the 
two sequence data sets, this was done independently for 
the high and the low coverage set.

Three SV callers (Manta v.1.6.0 [110], Whamg v.1.7.0 
[111] and Lumpy v.0.2.13 [112]) were applied per line 
and per coverage set yielding six call sets per line (see 

Additional file  1 for more detailed information). Spe-
cific filters were applied depending upon the call set. SVs 
detected by Manta were site-filtered by excluding SVs 
with poor mapping quality (Mapping Quality (MAPQ) < 
30) or with excessive coverage (>3 × the median chromo-
some depth) that could be due to reads originated from 
low complexity regions. For each sample, only SVs with 
GQ ≥ 20 and read depth ≥5× were accepted. Whamg 
SV calls with sizes <50 bp and >2 Mb were filtered out 
to improve call accuracy. Here too, only calls with read 
depth ≥ 5× were accepted. Calls with GQ < 20 were fil-
tered out. To reduce the number of false positive calls, 
high cross-chromosomal mappings were excluded, as 
Whamg is aware of but does not specifically call trans-
locations. Likewise, SVs in poorly mapped regions were 
also removed. Lumpy SV calls for which supporting evi-
dence (FORMAT/SU field) was below 5 (SU<5) were 
excluded, as well as SV calls with GQ<20. Since both 
Whamg and Lumpy do not have a built-in genotyping 
module, SV call sets were genotyped with Svtyper v0.7.1 
[101] prior filtering for genotype quality. For each line 
and coverage set, SVs called by at least two SV callers 
were merged using Survivor v.1.0.7 [102] and kept if they 
were found in at least 10 samples. The final set consisted 
of the union of SVs detected in the high and low cover-
age read sets. We then intersected SV calls among all 
six mouse lines to obtain SVs private for each line (line-
specific) and SVs shared among lines. SVs were annotated 
with Ensembl’s VEP [103] focusing on variants affecting 
protein-coding genes with the maximum SV size set to 
200 Mb.

Functional classification was conducted after thorough 
literature and database search (OrthoDB v10 [104], Uni-
prot [107], NCBI Entrez gene [105]), plus Gene Ontology 
enrichment analysis (Shiny GO [106], false discovery rate 
[FDR] < 0.05). To further minimize false positives, SV 
calls overlapping gaps and high coverage regions (>80×) 
in the reference genome assembly were filtered out.

Population genetics analysis
Genetic structure among all 150 samples was assessed 
using HC analysis and genetic admixture. HC was com-
puted using SNPRelate v1.22.0 [135]. The ape v5.0 
package was used for visualization of HC results [136]. 
Genetic admixture was estimated with ADMIXTURE 
v1.3.0 [137] after transforming the Variant Calling File 
(VCF) file into a BED file using PLINK v2.00a2LM [138, 
139]. Linkage disequilibrium (LD) was evaluated after 
thinning the main VCF file with vcftools v0.1.13 [140] 
retaining sites at least 100 kb apart and then calculating 
r2 within windows of 5 Mb using PLINK v2.00a2LM [138, 
139]. Runs of homozygosity were estimated for each sam-
ple using the RoH extension [141] in SAMtools/BCFtools 
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v1.5 [122]. For this, allele frequencies at each SNP site 
and a constant recombination rate (average recombina-
tion rate mouse genome: 0.51 cM/Mb [142, 143]) were 
provided. These parameters, plus the genotype likeli-
hoods stored in the VCF containing the sample, allow to 
identify RoHs using a hidden Markov model.

Genetic differentiation and diversity analysis
The genomes of the trait-selected lines were compared 
to the neutrally evolving control line (FZTDU). For this, 
genetic differentiation was estimated using the FST index 
[144] in sliding window mode (size = 50 kb, step = 25 kb, 
min 10 SNPs) using vcftools v0.1.13 [140]. Since FST cal-
culations are based on allele counts and not read counts, 
differences in depth between low and high coverage sam-
ples are not expected to have a direct effect in the esti-
mation of genetic differentiation. The average number 
of SNP sites per window was ~ 125 (Additional file  3: 
Table S11). At each window, the arithmetic mean of the 
SNP-specific FST was calculated and then transformed 
into z-scores to represent its departure from the genomic 
mean. Additionally, all samples of the two fertility lines 
(DUK and DUC) were combined (pseudo-line: FERT) 
and compared to FZTDU as well. Since autosomes and 
the X-chromosomes have different effective population 
sizes, the X-chromosome was standardized individually. 
In order to identify RDDs, FST windows appearing simul-
taneously in the 95th percentile of a given contrast and 
in the bottom 10th percentile of all other contrast were 
identified. These thresholds are not derived from model-
ling neutrality, rather they were chosen empirically based 
on a previous study [51] and after testing multiple com-
binations of ≥95th percentiles and ≤10th percentiles, 
choosing the combination in which RDDs could be found 
in all contrasts. The upper threshold is suitable to evalu-
ate genetic differentiation [49, 145, 146], while the bot-
tom threshold ensures that there is practically no genetic 
differentiation between any of the other trait-selected 
lines and the control line (Fig. 6D and Fig. 7D). Genome-
wide diversity patterns were assessed by measuring the 
nucleotide diversity (π) [147] in sliding windows of 50 kb 
size (step size = 25 kb) using vcftools v0.1.13 [140].

Gene annotation and enrichment analysis
Genes overlapping RDDs were identified using Genomi-
cRanges [148] and Ensembl 93’s [120] Mus musculus gene 
set. In order to sort out the most relevant genes for each 
of the selected traits, thorough inspection of functional 
annotations, literature and SNP effects was conducted. 
This also included testing for enrichment of Gene Ontol-
ogy Biological Processes (GOBP) [149, 150] and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
[151–153] using WebGestalt [154–157] using the whole 

genome as reference set. A FDR threshold of 10% was 
used as cutoff for significant enrichment of a term or 
pathway. Finally, genes in quantitative trait loci (QTLs) 
were identified by finding overlaps with QTL data com-
piled in the Mouse Genome Database [158, 159].

Data handling and visualization
Data processing and visualizations were done using R 
[160] and the tidyverse package [161].
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